Radical cyclisation with high diastereofacial selectivity: asymmetric synthesis of (+)-12b-epidevinylantirhine

P harmaceutical Institute, Tohoku U niversity, A obayama, Sendai 980-77, J apan

Radical cyclisation of the chiral α, β-unsaturated ester 1 , carried out in the presence of MAD, gives six-membered cyclic acetal 2 diastereoselectively, which is transformed into (+)-12b-epidevinylantirhine 7 .

Radical cyclisation is well recognised as one of the most versatile methods for the creation of new carbon-carbon bonds. ${ }^{1}$ Previously, we demonstrated the stereoselective formation of six-membered ring compounds with excellent 1,2-asymmetric induction. ${ }^{2}$ As an extension of this work, a diastereofacially selective radical cyclisation of a chiral α, β-unsaturated ester has been investigated. We now report the highly selective outcome, as well as an asymmetric synthesis of (+)-12b-epidevinylantirhine, a cleaved product of geissoschizol. ${ }^{3}$

The substrate 1 was prepared from 3-tert-butyldimethylsilyloxypropanol ${ }^{4}$ using standard procedures; oxidation with pyridinium dichromate (PDC), Wittig reaction using (-)-8-phenyl-p-menthan-3-yl (triphenylphosphoranylidene)acetate, ${ }^{5}$ deprotection with $\mathrm{Bu}_{4} \mathrm{NF}$ in the presence of acetic acid and acetal formation with ethyl vinyl ether and N -bromosuccinimide (NBS). ${ }^{6}$ R adical cyclisation of 1 was carried out under various conditions. Since purification of cyclic acetal $\mathbf{2}$ was difficult, the crude product was converted into the lactone 3 (Scheme 1). The overall yield for the three steps and the dia-

Scheme 1 R eagents and conditions: i, see Table 1; ii, $10 \% \mathrm{HClO}_{4}, \mathrm{TH}$ F, $20^{\circ} \mathrm{C}, 12 \mathrm{~h}$; iii, $\mathrm{A} \mathrm{g}_{2} \mathrm{CO}_{3}$-Celite, benzene, reflux, 1 h
stereoisomeric excess (de), determined by ${ }^{1} \mathrm{H}$ NMR spec troscopy (300 M Hz in $\mathrm{C}_{6} \mathrm{D}_{6}$) of 3, are shown in Table 1
H eating with $\mathrm{Bu}_{3} \mathrm{SnH}$ (entry 1) and $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{3} \mathrm{SiH}$ (entry 2) in the presence of azoisobutyronitrile (AIBN) resulted in poor diastereoselectivities (13% de), while reaction with $\mathrm{Bu}_{3} \mathrm{SnH}$ and $\mathrm{Et}_{3} \mathrm{~B}^{7}$ at $-40^{\circ} \mathrm{C}$ gave 31% de (entry 3). The diastereoselectivity was improved by addition of a Lewis acid. ${ }^{8} \mathrm{~A}$ moderate selectivity, 67% de, was obtained by reaction in the presence of 4.0 equiv. of $\mathrm{M}_{3} \mathrm{Al}$ (entry 4). H owever, no formation of the other stereoisomer was observed (>98\% de) in the ${ }^{1} \mathrm{H}$ N M R spectrum of 3 , prepared by reaction in the presence of 2.0 equiv. of methylaluminium bis(2,6-di-tert-butyl-4-methylphenoxide) (MAD) ${ }^{9}$ (entry 5).

The stereochemistry of the predominant isomer 4 was established by transformation into (+)-12b-epidevinylantirhine 7 (Scheme 2). Treatment of the product 4, obtained using M AD (Table 1, entry 5), with tryptamine in hot toluene afforded 5, which was cyclised to $\mathbf{6}$ in two steps. The Bischler-N apieralski

Table 1 Diastereofacially selective radical cyclisation of 1

Entry	Conditions	Y ield of 3 (\%) ${ }^{\text {a }}$	De(\%) ${ }^{\text {b }}$
1	$\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AIBN}$, benzene, reflux, 3.5 h	70	13
2	$\left(\mathrm{M} \mathrm{e}_{3} \mathrm{Si}\right)_{3} \mathrm{SiH}, \mathrm{A} I \mathrm{BN}$, benzene, reflux, 4 h	65	13
3	$\begin{aligned} & \mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{Et}_{3} \mathrm{~B}, \text { toluene, }-40^{\circ} \mathrm{C}, \\ & 1.5 \mathrm{~h} \end{aligned}$	44	31
4	$\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{Et}_{3} \mathrm{~B}, \mathrm{M} \mathrm{e}_{3} \mathrm{Al}$, toluene, $-40^{\circ} \mathrm{C}, 2 \mathrm{~h}$	51	67
5	$\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{Et}_{3} \mathrm{~B}, \mathrm{M} \mathrm{AD}$, toluene, $-40^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$	38	>98

${ }^{\text {a }}$ O verall yield for three steps from $1 .{ }^{\text {b }}$ D e was calculated based on the ${ }^{1}$ H N M R spectrum of $\mathbf{3}$

4

7

5

6

Scheme 2 R eagents and conditions: i, tryptamine, toluene, $110^{\circ} \mathrm{C}, 7.5$ h, 72%; ii, $\mathrm{M} \mathrm{eSO}_{2} \mathrm{Cl}, \mathrm{Et}_{3} \mathrm{~N}$, benzene, $20^{\circ} \mathrm{C}, 1 \mathrm{~h}$; iii, $\mathrm{KH}, 18$-crown- 6 , $\mathrm{MeOCH} \mathrm{CH}_{2} \mathrm{OMe} 20^{\circ} \mathrm{C}, 1.5 \mathrm{~h}, 69 \%$ for 2 steps; iv, $\mathrm{POCl}_{3}, \mathrm{MeCN}$, reflux, $1.5 \mathrm{~h} ; \mathrm{v}, \mathrm{NaBH}, \mathrm{M} \mathrm{eOH}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$; vi, DIBAL, toluene, $0^{\circ} \mathrm{C}, 0.5$ h, 35\% for 3 steps
reaction of 6, followed by reduction of the resulting iminium salt with NaBH_{4}, produced stereoselectively the indolo[2,3a]quinolizine as a single stereoisomer, which was further reduced with DIBAL to provide $\left(+\right.$)-7, $[a]_{D}^{21}+12.3$ (c 0.50 in MeOH). The relative stereochemistry was deduced from the ${ }^{1} \mathrm{H}$ NMR spectroscopic data. ${ }^{3 a}$ The selective formation of the single isomer by the above reduction with NaBH_{4} is explainable by stereoelectronic effects. ${ }^{10}$ The R configuration at the 12 b position was suggested by the circular dichroism (CD) spectrum, [θ] $-3.14 \times 10^{3}(269 \mathrm{~nm}$ in MeOH$) .{ }^{11}$ This indicates that the radical cyclisation proceeds via the s-trans conformation 8, and is restricted by the presence of the L ewis acid.

It is expected that the above six-membered ring compounds 2

and 4, possessing newly created stereogenic centres with three differentiated C-2 units, will be useful as chiral intermediates.

Experimental

(+)-(1^{\prime} R, 3^{\prime} R , $4^{\prime} \mathrm{S}$)- -8^{\prime}-P henyl-p-menthan- 3^{\prime}-yl (4 S)-2-oxo-3,4,5,6-tetrahydro- 2 H -pyran-4-ylacetate 4
To a mixture of $1(42.6 \mathrm{mg}, 0.089 \mathrm{mmol})$ and $\mathrm{Bu}_{3} \mathrm{SnH}(0.036$ $\mathrm{cm}^{3}, 0.133 \mathrm{mmol}$) in dry toluene ($20 \mathrm{~cm}^{3}$) at $20^{\circ} \mathrm{C}$ was added 0.5 м M AD in toluene ($0.186 \mathrm{~cm}^{3}, 0.093 \mathrm{mmol}$), and the mixture was stirred for 30 min at $-40^{\circ} \mathrm{C}$. A fter addition of $1.0 \mathrm{~m} \mathrm{Et}_{3} \mathrm{~B}$ in hexane ($0.093 \mathrm{~cm}^{3}, 0.093 \mathrm{mmol}$) at $-40^{\circ} \mathrm{C}$, the mixture was stirred for 1.5 h at the same temperature. A fter evaporation of the solvents, followed by dilution with $\mathrm{Et}_{2} \mathrm{O}$, the resulting mixture was washed with $10 \% \mathrm{HCl}$, saturated aqueous NaHCO_{3} and brine, dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$ and the solvent evaporated. A mixture of the residue and $10 \% \mathrm{HClO}_{4}\left(2 \mathrm{~cm}^{3}\right)$ in THF $\left(4 \mathrm{~cm}^{3}\right)$ was stirred for 12 h at $20^{\circ} \mathrm{C}$. A fter dilution with $\mathrm{Et}_{2} \mathrm{O}$, the organic layer was washed with saturated aqueous NaHCO_{3} and brine and dried $\left(\mathrm{M} \mathrm{SSO}_{4}\right)$. Evaporation of the solvents gave the crude cyclic hemiacetals, which were taken up into dry benzene (10 cm^{3}). A fter addition of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$-Celite ($17: 15 \mathrm{w} / \mathrm{w}, 890 \mathrm{mg}$, $0.887 \mathrm{mmol})$, the mixture was heated for 1 h under reflux. Filtration through Celite, followed by evaporation of the filtrate, afforded a residue which was subjected to column chromatography on silica gel. Elution with hexane-A cOEt ($3: 1 \mathrm{v} / \mathrm{v}$) provided $4(12.6 \mathrm{mg}, 38 \%)$ as an oil; $[a]_{\mathrm{D}}^{24}+3.9\left(\mathrm{c} 1.05 \mathrm{in} \mathrm{CHCl}_{3}\right.$); $v_{\text {max }} / \mathrm{cm}^{-1} 1735$ and $1725(\mathrm{C}=0)$; $\delta_{\mathrm{H}}\left(300 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}\right) 0.88$ (3 H, d, J 6.6, $7^{\prime}-\mathrm{H}_{3}$), 0.93-1.01 ($1 \mathrm{H}, \mathrm{m}$), 1.10-1.26 ($1 \mathrm{H}, \mathrm{m}$), 1.18 ($3 \mathrm{H}, \mathrm{s}, 8^{\prime}-\mathrm{Me}$ e), $1.29\left(3 \mathrm{H}, \mathrm{s}, 8^{\prime}-\mathrm{M} \mathrm{e}\right), 1.33-1.59(4 \mathrm{H}, \mathrm{m}), 1.62-$ $1.76(2 \mathrm{H}, \mathrm{m}), 1.80-1.90(3 \mathrm{H}, \mathrm{m}), 1.94-2.13(3 \mathrm{H}, \mathrm{m}), 2.53-2.65$
($1 \mathrm{H}, \mathrm{m}$), 4.16-4.24 ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), 4.31-4.38 ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$), 4.81 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 4.4,10.7,10.7,3^{\prime}-\mathrm{H}$), 7.09-7.31 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$) (HRM S: found $\mathrm{M}^{+}-\mathrm{CM} \mathrm{e}_{2} \mathrm{Ph}, 253.1490 . \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{4}$ requires 253.1440).

A cknowledgements

This work was, in part, supported by the M itsumaru Pharmaceutical Co., Ltd, whose support is gratefully acknowledged.

References

1 B. Giese, Radicals in Organic Synthesis: Formation of CarbonCarbon Bonds, Pergamon, Oxford, 1986; D. P. Curran, in Comprehensive Organic Synthesis, ed. B. M. Trost, I. Fleming and M. F. Semmelhack, Pergamon, Oxford, 1991, vol. 4, p. 715; A. L. J. Beckwith, Chem. Soc. Rev., 1993, 143; G. Stork and N. H. Baine, J. A m. C hem. Soc., 1982, 104, 2321.

2 M . Ihara, K. Yasui, N. Taniguchi and K. Fukumoto, J. Chem. Soc., Perkin Trans. 1, 1990, 1469.
3 (a) E. Wenkert, M. Guo, M. J. Pestchanker, Y.-J. Shi and Y. D. Vankar, J. Org. Chem., 1989, 54, 1166; (b) M. Lounasmaa, R. Jokela, M. Halonen and J. M iettinen, Heterocycles, 1993, 36, 2523.

4 B. M. Trost and T. R. Verhoeven, J. Am. Chem. Soc., 1980, 102, 4743.

5 W. R. Roush, H. R. Gillis and A. I. K o, J. Am. Chem. Soc., 1982, 104, 2269.
6 Y. U eno, K. Chino, M. Watanabe, O. M oriya and M. Okawara, J. A m. C hem. Soc., 1982, 104, 5564.

7 K. N ozaki, K. Oshima and K. U timoto, J. Am. Chem. Soc., 1987, 109, 2547.
8 M. N ishida, E. U eyama, H. H ayashi, Y. Ohtake, Y. Yamaura, E. Y anaginuma, O. Yonemitsu, A. N ishida and N. K awahara, J. A m. C hem. Soc., 1994, 116, 6455.
9 K . M aruoka, T. Itoh, M. Sakurai, K . N onoshita and H. Yamamoto, J. A m. Chem. Soc., 1988, 110, 3588.

10 P . Deslongchamps, Stereoelectronic Effects in Organic Chemistry, Pergamon, Oxford, 1983.
11 G. Toth, O. Clauder, K. Gesztes, S. S. Yemul and G. Snatzke, J. Chem. Soc., Perkin Trans. 2, 1980, 701.

Paper 7/00834A
Received 5th February 1997
A ccepted 7th February 1997

